Посев на кровяной агар

Кровяной агар — обобщённое название питательных сред, содержащих в составе кровь животных. Предназначен для выделения и культивирования прихотливых микроорганизмов, а также их первичной дифференциации по типу гемолиза.

Содержание

Состав и приготовление [ править | править код ]

Кровяной агар готовят путём добавления к расплавленной и охлаждённой до 45-50 °C стерильной плотной питательной среде от 5 до 10 % крови животных. В отличие от шоколадного агара, кровь не подвергают нагреванию с целью лизировать эритроциты, в связи с этим, можно считать кровяной агар первичной средой по отношению к шоколадному агару.

В качестве агаризованной питательной среды при приготовлении кровяного агара могут быть использованы:

  • колумбийский агар (Columbia agar),
  • агар для бруцелл,
  • эритрит-агар,
  • агар Гивенталя-Ведьминой (АГВ),
  • триптиказо-соевый агар (trypticase soy agar),
  • сердечно-мозговой агар (brain heart infusion agar)

Наиболее часто для приготовления кровяного агара используют дефибринированную баранью кровь. В зависимости от назначения среды и выделяемых микроорганизмов, могут использовать кровь и других животных, например, лошадиную, крупного рогатого скота (кровь КРС), кроличью, морских свинок. Человеческую (донорскую) кровь не рекомендуют для приготовления кровяного агара из-за того, что она может содержать антитела, подавляющие рост бактерий [3] .

Гемолиз, вызываемый микроорганизмами на кровяном агаре [ править | править код ]

В результате метаболической активности некоторые микроорганизмы выделяют различные экзотоксины (гемолизины), вызывающие лизис крови (гемолиз). Особенностью кровяного агара является возможность наблюдать гемолитическую активность микроорганизмов и дифференцировать их по типу гемолиза. Гемолиз разделяют на три типа:

  • α-гемолиз (альфа-гемолиз) — происходит частичное разрушение эритроцитов с сохранением клеточной стромы, в ходе этого типа гемолиза гемоглобин превращается в метгемоглобин, за счёт чего питательная среда в зоне роста бактерий приобретает зеленоватый оттенок. Наиболее часто α-гемолиз вызывают зеленящие стрептококки.
  • β-гемолиз (бета-гемолиз) — полный лизис эритроцитов, при котором в зоне роста микроорганизма питательная среда обесцвечивается. Такой тип гемолиза характерен для стафилококков, бета-гемолизирующих стрептококков, листерий, клостридий и некоторых других микроорганизмов.
  • γ-гемолиз (гамма-гемолиз) — отсутствие гемолиза, цвет кровяного агара в зоне роста микроорганизма остаётся неизменным [4] .

У некоторых микроорганизмов тип гемолиза может изменяться под воздействием условий окружающей среды. Например, пневмококк при культивировании в присутствии кислорода образует на кровяном агаре зоны α-гемолиза, однако под воздействием некоторых антибиотиков или при культивировании в анаэробных условиях происходит β-гемолиз [5] . Clostr >[6] .

Применение [ править | править код ]

Кровяной агар является одной из питательных сред, которая в обязательном порядке применяется при диагностических исследованиях клинического материала [7] .

Кровяной агар, приготовленный на основе агара Мюллера-Хинтон с добавлением 5 % дефибринированной лошадиной крови и 20 мг/л НАД, применяют для определения чувствительности к антибактериальным препаратам бактерий со сложными питательными потребностями, например, стрептококков групп A, B, C и G, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis и др [8] .

1. Изучение мазков из чистой культуры стафилококка, окрашенных по Граму (зарисовать)

В препарате из чистой культуры видны грамположительные кокки, располагающиеся скоплениями в виде “виноградных гроздьев”. Могут встречаться единичные кокки или маленькие кучки.

2. Изучение мазков из гноя, окрашенных по Граму (зарисовать)

В мазке, на фоне клеточного детрита, окрашенного в розовый цвет, видны лейкоциты и грамположительные кокки, расположенные одиночно или небольшими кучками, не образующие капсул. Расположение кокков позволяет предположить длительность заболевания. Если заболевание свежее, то микробы располагаются внеклеточно, в более поздние сроки болезни можно наблюдать кокки, фагоцитированные лейкоцитами.

3. Изучение характера роста стафилококков на кровяном агаре (зарисовать)

Посев на кровяном агаре позволяет определить тип гемолизина, выделяемого стафилококками. Гемолитическая активность является одним из признаков патогенности стафилококков. Для приготовления кровяного агара, к 1,8 % МПА расплавленного и остуженного до 45–50 градусов добавляют 5% дефибринированной или свежевзятой крови животного (кролика, барана, крупного рогатого скота) или человека. После тщательного перемешивания агар разливают по чашкам. Гемолизин стафилококков вызывает растворение стромы эритроцитов, поэтому вокруг колоний стафилококков, обладающих гемолитической активностью, образуются светлые зоны гемолиза. Штаммы, образующие альфа-гемолизин, вызывают гемолиз кроличьих и бараньих эритроцитов, бета-гемолизин вызывает тепло-холодовой гемолиз только бараньих эритроцитов. Вокруг колоний стафилококков без гемолитической активности кровяной агар не изменен.

4. Изучение характера роста стафилококков на желточно-солевом агаре (ЖСА) (зарисовать)

Посев на желточно-солевом агаре проводят для определения лецитовителлазы (лецитиназы). Для приготовления ЖСА к 10% солевому агару, расплавленному и остуженному до 60 градусов, добавляют 10% желточной взвеси (1 желток асептично взбалтывают в 200 мл физиологического раствора), агар тщательно смешивают и разливают в чашки.

St.aureus образует на желточно-солевом агаре непрозрачные круглые, слегка выпуклые колонии золотистого или желтого цвета. Среда вокруг колоний мутнеет за счет расщепления липовителлина (комплекс жира и белка), содержащегося в желтке ферментом лецитиназой. В результате действия фермента от липовителлина отрываются жирные кислоты, степень дисперсности белка уменьшается, происходит преципитация его, что приводит к помутнению среды. Освобождение жирных кислот сопровождается образованием “радужного” ореола вокруг колоний (лецитиназоположительные стафилококки).

St.epidermidis на желточно-солевом агаре образует колонии белого цвета или лимонно-желтые с ровным краем, среднего размера. Среда вокруг колоний не изменена (лецитиназоотрицательные стафилококки).

Читайте также:  В интимном месте появилась шишка болит

5. Изучение характера роста стафилококков на молочно-солевом агаре (зарисовать)

Молочно-солевой агар используют для выделения стафилококков из материала, обильно обсемененного микробами, а также для определения пигмента образуемого стафилококками. Для приготовления молочно-солевого агара к 6,5% солевому агару, расплавленному и остуженному до 50 градусов, добавляют 10% стерильного обезжиренного молока. Агар тщательно перемешивают с молоком и разливают в чашки. Для лучшего выявления пигмента посевы инкубируют 18-20 часов при 37 градусах, а затем до 2 суток при комнатной температуре в рассеянном свете.

St.aureus образует колонии золотистого цвета средних размеров, блестящие, выпуклые. St.epidermidis образует подобные колонии белого цвета. St. citreus (только как образующий пигмент) образует подобные колонии лимонно-желтого цвета.

6. Изучение лабораторной диагностики стафилококковых инфекций по схеме (зарисовать)

Основные методы микробиологического исследования:

Микроскопический метод. Метод основан на обнаружении стафилококков при микроскопическом исследовании мазков из материала, которые окрашивают по Граму. Под микроскопом изучают гной, отделяемое ран, слизь и налеты с миндалин и другой материал, содержащий большое количество микробов. Микроскопическое исследование крови не производят, так как кокки в мазках обнаружить не удается. Жидкий материал наносят на предметное стекло пипеткой или петлей. Густой материал растирают на стекле в капле воды, материал с тампона размазывают по стерильному предметному стеклу. В мазках обнаруживают грамположительные кокки среди лейкоцитов или внутри них. Отмечают степень обсемененности. Определить вид кокков в мазке не всегда удается, поэтому микроскопическое исследование носит ориентировочный характер. Но даже обнаружение в материале типичных по морфологии стафилококков не позволяет поставить диагноз инфекции, потому что присутствие стафилококков в исследуемом материале не всегда является доказательством его этиологической роли, по морфологии невозможно отдифференцировать патогенные стафилококки от непатогенных. Поэтому наряду с микроскопическим исследованием обязательно проводят бактериологическое исследование.

Бактериологический метод. Бактериологический диагноз основан на выделении чистой культуры стафилококка путем посева и определения его патогенных свойств. Этот метод используется также для установления источника инфекции факторов передачи инфекции, определения схемы антибактериальной терапии, ее эффективности, контроля за лечением и эпидемическим режимом в лечебных учреждениях. Важным условием бактериологической диагностики является определение качественных и количественных критериев содержания патогенного стафилококка.

Исследование гноя (слизи из носа или зева, налета)

Для посева материала выбирают необходимые питательные среды. Стафилококки к питательным средам неприхотливы и способны расти на МПА. Но для повышения высеваемости и возможности провести количественный учет и надежно отличить патогенные стафилококки от непатогенных используют элективные питательные среды. В качестве элективных сред используют молочно-солевой, желточно-солевой агар или молочно-желточно-солевой агар. Элективность этих сред обеспечивается высоким содержанием хлорида натрия (6,5–10%), добавленное молоко позволяет определить цвет образуемого пигмента, а яичный желток – выявить лецитовителлазную (лецитиназную) активность, которая является одним из факторов патогенности стафилококков.

Для посева материала используют также кровяной агар, который дает возможность определить наличие пигмента и гемолитическую активность. Однако нужно помнить, что результат исследования (наличие гемолитической активности) зависит от вида крови, ее концентрации, густоты крови, присутствия и характера сопутствующей флоры. Поэтому использование кровяного агара рекомендуется для первичного посева материала, не содержащего другой микрофлоры.

Для оценки обсемененности производят количественный посев материала, готовя из него разведения, и высевают по 0,1 мл из разведений десять во второй, десять в четвертой и десять в шестой степенях. С тампона засевают цельный материал. Посевы на ЖСА инкубируют в течение 2 суток, а на кровяном агаре – 18–20 часов.

Так как ЖСА является элективной средой, то на нем вырастают только колонии стафилококков. Обращают внимание на наличие лецитиназоположительных колоний, подсчитывают их, отбирают 2-3 колонии для дальнейшего исследования. Если на ЖСА вырастают только лецитиназоотрицательные стафилококки, то из посева тоже отбирают не менее 2 колоний. И лецитиназоположительные и лецитиназоотрицательные стафилококки отсевают на скошенный мясопептонный агар. После суточного инкубирования выделенную культуру изучают в мазках, окрашенных по Граму, определяя морфологию микробов и чистоту культуры. При наличии в мазке грамположительных кокков, расположенных характерными гроздьями, проводят исследование для идентификации стафилококков. Согласно генотипической классификации род Staphylococcus относится к семейству Staphylococcасеае, класс Bacilli, в которое входят также роды: Jeotgalicoccus, Macrococcocus, Nosocomiicoccus, Salinicoccus. Общими признаками для представителей этого семейства является то, что все они грамположительные кокки. Для установления принадлежности к роду Staphylococcus проводится первичная идентификация по наличию каталазы и способности ферментировать глюкозу в анаэробных условиях.

Стафилококки ферментируют маннит в анаэробных условиях (табл.10). Микрококки не ферментируют глюкозу в анаэробных условиях, так как они облигатные аэробы.

Не нашли то, что искали? Воспользуйтесь поиском:

Методика. Чашку с кровяным МПА делят на 2 части. Слизь из носа 6epут стерильным тампоном и засевают ее на половину чашки. Для этого тампоном проводят полосу, параллельную линии раздела. При посеве тампон нужно вращать, чтобы он со всех сторон коснулся агара, посев распределяется простерилизованной петлей по всей поверхности соответствующей половины чашки Петри штрихами, перпендикулярно пересекающими линию, нанесенную тампо­ном.

Во вторую половину чашки Петри точно так же делается посев отделяемого из зева, взятого другим тампоном.

МИКРОФЛОРА КИШЕЧНИКА

Посев кала на среду Эндо

Методика. Для определения микрофлоры кишечника де­лается посев испражнений на среду Эндо. Стерильной петлей берется капля испражнений и методом штриха на чашку Петри делается посев. Инкубация в термостате при темпера­туре 37 о С и времени 24 часа.

Читайте также:  Как узнать что у тебя рак матки

МИКЛОФЛОРА ЗУБНОГО НАЛЕТА

Методика. Для приготовления мазка материал берут с зуб­ной бляшки (стерильным шпателем) палочкой, делают мазок на предметном стекле с физраствором, высушивают, фикси­руют и окрашивают по Граму, микроскопируют.

Обнаруженные в препарате микробы сравнивают по мор­фологии с микроорганизмами, нарисованными на таблице «Зубной налет», рисуют и обозначают. Рисунок оформить над­писью «Микроорганизмы из зубного налета, окраска по Граму».

Оформление протокола

Выписать основных представителей нормальной микро­флоры по латыни, нарисовать микропрепарат из зубного на­лета.

Тема: «Генетика бактерий»

Цель:

– ознакомить с особенностями генетического аппарата бактерий,

механизмами рекомбинации, ролью генной инженерии в

современной медицине и биотехнологии.

Знать:

– механизмы изменчивости бактерий, виды рекомбина­ций;

– значение конъюгативных плазмид в распростра­нении

антибиотикорезистентности и биологии бакте­рий.

Уметь:

– отличить модификационную изменчивость от мутаци­онной;

– оценить бактериоциногенность культур;

– дока­зать плазмидную природу антибиотикорезистент­ности.

Генетический аппарат бактерий имеет ряд особенностей ор­ганизации.

Особенности генетического аппарата бактерий:

1) цитологические:

– наследственный аппарат бактерий представлен нуклеоидом;

– в отличие от ядра нуклеоид не имеет ядерной мембраны;

– в нуклеоиде нет ядрышек;

– в нуклеоиде одна хромосома;

– в бактериальной клетке может быть дополнительное на­следственное вещество – плазмида;

– молекула ДНК хромосомы и плазмиды прикрепляются к ЦПМ.

2) молекулярные:

– хромосома бактерий имеет кольцевую структуру;

– хромосома бактерий — чистая двунитчатая ДНК, не со­держит гистонов;

– в ДНК бактерий повышенное содержание метиллированных (минорных) азотистых оснований, они выполняют защит­ную функцию гистонов;

– ДНК бактерий содержит Is-последовательности, строение которых аналогично таким же участкам ДНК у высших орга­низмов;

– отмечается выраженная изменчивость нуклеотидного со­става: соотношение гуанина и цитозина (Г/Ц-индекс) у бактерий имеет видовые отличия.

Важное место в генетике бактерий занимают плазмиды – дополнительные, внехромосомные элементы наследственности. Плазмида, как и хромосома, представлена кольцевой молекулой двунитчатой ДНК, но ее размеры значительно меньше хромосо­мы. Плазмида содержит структурные гены, кодирующие тот или иной признак, гены автономной репликации, Is-последователь­ности. У некоторых плазмид есть гены, ответственные за ее трансмиссивность (перенос, передачу). Такие плазмиды назы­ваются трансмиссивными (конъюгативными).

Основные свойства плазмид:

1. гены плазмид несут не обязательную для клетки инфор­мацию, а лишь сообщают ей селективные преимущества; без плазмид клетка существовать может, а без хромосомы нет;

2. плазмидная ДНК имеет значительно меньшую молеку­лярную массу, чем хромосомная;

3. плазмиды способны к автономной репликации, или их репликация находится под ослабленным контролем хромосомы;

4. для плазмид с низкой молекулярной массой характерно явление амплификации (многокопийности);

5. некоторые плазмиды (F-, R-факторы) способны нахо­диться как в автономном, так и интегрированном с хромосомой состоянии; штаммы, у которых F-фактор интегрирован с хромо­сомой, – Hfr-штаммы;

6. молекула ДНК плазмид более подвержена воздействию физических и химических агентов, чем хромосомы; частота плазмидных мутаций выше, чем хромосомных;

7. некоторые физические (УФ, СВЧ и др.) и химические (акридиловые красители) агенты вызывают элиминацию (удаление, потерю) плазмид;

8. плазмиды могут содержать tra-гены и самостоятельно пе­редаваться в процессе конъюгации, это конъюгативные плазми­ды; частота передачи плазмидных генов выше, чем хромо­сомных; трансмиссивность (передача, перенос) плазмид может быть связана и с переносом их в клетки умеренными трансдуцирующими фагами;

9. в клетке могут находиться несколько разных плазмид, но некоторые плазмиды несовместимы между собой; по этому приз­наку различают группы несовместимости плазмид.

Плазмиды могут детерминировать разные свойства бакте­рий.

1. R-плазмиды – кодируют лекарственную устойчивость.

2. F-плазмида – определяет пол бактерий.

3. Col-плазмиды – детерминируют синтез бактериоцинов.

4. Hly-плазмиды – кодируют синтез гемолизинов.

5. Ent-плазмида – детерминирует синтез энтеротоксина.

6. Плазмиды биодеградации – обусловливают расщепление сложных ароматических и других соединений, например, нефти, парафина, ПАВ и др.

Плазмиды играют важную роль в процессах рекомбинации (обмена генетической информацией) у бактерий.

У бактерий, как и у всех живых организмов, есть 2 типа из­менчивости: фенотипическая и генотипическая. Фенотипическая изменчивость – это изменение только каких-либо внешних признаков, она не затрагивает генотип. Генотипическая измен­чивость затрагивает не только фенотип, но и генотип. Она связа­на с изменениями генетического аппарата.

Проявлениями фенотипической изменчивости у бактерий являются модификации: кратковременные (в пределах одного поколения) и длительные (сохраняются в поколениях).

Отличия длительной модификации от мутации:

1. отсутствие изменений в структурных генах генотипа;

2. приобретение новых свойств большим числом особей в популяции;

3. «затухание» (исчезновение) признака в ряду поколений.

Примером фенотипической изменчивости бактерий являет­ся диссоциация – расщепление признака – при изменении усло­вий культивирования: переход S-форм с гладкими колониями в R-формы с шероховатыми колониями, потеря пигмента, появле­ние неподвижных вариантов у подвижных бактерий и т. д.

Генотипическая изменчивость бактерий связана с мутациями и рекомбинациями.

Мутации у бактерий могут быть спонтанные и индуциро­ванные известным мутагеном. По локализации различают:

1. генные – затрагивают один ген;

2. хромосомные – затрагивают группу генов;

3. плазмидные – затрагивают гены плазмид.

Механизм мутаций Вам известен. Это: а) деления – потеря гена или участка ДНК; б) дупликация – удвоение генетического фрагмента; в) транспозиция – изменение положения гена; г) инверсия – переворот участка ДНК на 180°; д) вставка нового гена.

Читайте также:  Как нужно вести себя при беременности

Фенотипическое проявление мутаций чаще ведет к потере признака – прямая мутация или к его восстановлению – обрат­ная мутация. Так как у бактерий одна хромосома, то частота фенотипических проявлений мутаций высока, а делеция большого участка хромосомы летальна для бактерий.

Вторым механизмом генотипической изменчивости у бакте­рий являются рекомбинации.

Особенности рекомбинаций у бактерий:

1. однонаправленность переноса генетической информации (от донора к реципиенту);

2. неодинаковое долевое участие генома донора и реципи­ента в образовании рекомбинанта (реципиентный геном полнос­тью переходит к рекомбинанту, а от донора – только отдельные гены, плазмиды);

3. в результате рекомбинации образуется мерозигота (частичная зигота);

4. наличие нескольких механизмов рекомбинаций: конъ­югация, трансформация, трансдукция, слияние протопластов.

Механизмы рекомбинаций

I. Конъюгация – перенос генетической информации при непосредственном контакте донора и реципиента. Это аналог полового процесса у бактерий. Пол у бактерий определяет F-плазмида: в «мужских» клетках (F + ) она есть, в «женских» (F – ) — отсутствует.

Отличия F + и F – клеток:

– у F + клеток есть дополнительная генетическая информа­ция (F-фактор);

– F + клетки имеют на поверхности специальные f-пили, обеспечивающие контакт клеток при конъюгации;

– F + , клетки имеют дополнительный fi-антиген (белок f-пилей);

– F + и F – клетки отличаются поверхностным зарядом;

– F + клетки чувствительны к «мужским» фагам, которые не адсорбируются на F – клетках;

– F + клетки обладают свойствами донора (отдают генетическую информацию), a F – клетки – свойствами реципиента (воспринимают генетическую информацию). Как уже указывалось, реципиентные клетки участвуют в образовании рекомбинанта реем своим геномом, а донор передает свою генетическую инфор­мацию лишь частично. Чаще это конъюгативные плазмиды, но Hfr-штаммы передают с высокой частотой хромосомные гены при конъюгации.

II. Трансдукция – перенос генетической информации от до­нора к реципиенту с помощью трансдуцирующего фага. Трансдуцирующий фаг – это умеренный фаг, который при индукции лизогенной культуры захватывает соседние бактериальные гены и при инфицировании новых клеток вносит в них эти гены. При строгой специфичности локуса интеграции умеренного фага с хромосомой лизогенной клетки (например, для фага α, – рядом с 1ас-опероном, для фага Р – рядом с trp-опероном и т. д.) при индукции захваты­ваются и переносятся всегда строго определенные гены– это спе­цифическая трансдукция.Перенос случайных бактериальных генов умеренным фагом– общая трансдукция. Захват случайных бакте­риальных генов может происходить при сборке фагов или в том случае, когда профаг не имеет строго определенного локуса в геноме бактерий.

Как Вы знаете, изменение свойств бактерий, инфицирован­ных умеренным фагом, может происходить и под действием ге­нов самого фага –явление фаговой, или лизогенной конверсии.

Отличия трансдукции от фаговой конверсии:

– приобретение новых свойств при трансдукции идет за счет бактериальных генов, а при фаговой конверсии – за счет фагов;

– частота трансдукции значительно ниже частоты фаговой конверсии.

III. Трансформация – передача генетической информации при культивировании реципиента на среде с ДНК донора.

Трансформация возможна у близкородственных бактерий. Реципиент получает не всю молекулу ДНК донора, а ее отдель­ные фрагменты. Реципиентные клетки должны быть в состоянии компетентности. У клетки, готовой воспринять генетическую ин­формацию, обнаруживается особый белок – фактор компетент­ности. Его действие связывают:

– с повышением проницаемости клеточной стенки и ЦПМ для ДНК;

– с ингибированием ДНК-аз;

– с активированием синтетаз и рестриктаз.

Это состояние наблюдается в процессе деления клетки. Ког­да она активно строит свою ДНК, то в этот момент могут быть захвачены фрагменты чужой ДНК. In vivo в популяции часть клеток всегда активно размножается, а часть погибает, то есть имеются условия для трансформации. In vitro эти условия созда­ют искусственно.

Самостоятельная работа студентов

На практическом занятии

1. Опыт «Конъюгация 1»: передача хромосомного признака фер­ментации лактозы (Lac+) y E. сoli.

Донор: E. Coli Hfr C Lac+ Sm s

Реципиент: E. Coli K 12 F Lac Sm r

Рекомбинант: ? (назовите его и укажите генетическую ха­рактеристику по указанным маркерам).

Условные обозначения: – Sm – стрептомицин; S – чувстви­тельный; г – хромосомный признак резистентности к антибио­тику.

К 5 мл суточной бульонной культуры реципиента добавьте 0,5 мл суточной бульонной культуры донора (густота 5х10 8 м.т./мл). Смесь поместите в термостат на 30-60 минут, после чего сделай­те высев 0,1 мл на селективную среду Эндо со стрептомицином.

1) посев донора и реципиента на среду Эндо;

2) посев донора и реципиента на среду Эндо со стрептомицином. Через 18-24 часа просмотреть посевы.

1) на среде Эндо донор дает окрашенные в крас­ный цвет колонии за счет расщепления лактозы среды Эндо (меняется рН, меняется цвет индикатора), реципиент дает бес­цветные колонии, так как не расщепляет лактозы;

2) на среде Эндо со стрептомицином донор не растет, так как погибает под действием антибиотика, а реципи­ент, устойчивый к действию антибиотика, растет и дает бесцвет­ные колонии.

Последнее изменение этой страницы: 2016-06-23; Нарушение авторского права страницы

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector