Как увидеть бактерии

Наблюдение бактерий в микроскоп. Фото

Строение бактерий много проще и однообразнее, чем строение простейших, и здесь нет такого богатства форм, как у инфузорий. Однако это единообразие и простота строения делают бактерии очень хорошей моделью для многих опытов. Еще проще устроены, и поэтому еще лучше, как модель, вирусы. Но о них — после, в особой главе.

Чтобы посмотреть на живые бактерии, нам с вами придется поискать более сильные и сложные микроскопы, чем те, в которые можно рассмотреть инфузории. Без увеличения в 600—800 раз тут не обойтись.

Зато источник, в котором всегда можно найти множество разнообразных бактерий, доступен всегда. Это — ваш собственный рот. Соскребите зубной налет и размешайте его в капельке воды или слюны на предметном стекле. Этого вам хватит для ознакомления с основными формами бактерий.

Если вы посмотрите на них в обычный микроскоп, употребляющийся в медицинских и биологических лабораториях, то, наверное, разочаруетесь. Будут видны сероватые, с нечеткими контурами, очень маленькие палочки, шарики, нити. Разве их сравнить с причудливыми, как тропические рыбы, инфузориями?

В так называемый фазово-контрастный микроскоп вы сможете увидеть больше. Отличие этого микроскопа от обычного сводится к тому, что частицы, одинаково прозрачные для световых лучей, но с разной плотностью выглядят здесь по-разному: более плотные — темнее, менее плотные — светлее.

Интересно наблюдать живых бактерий в так называемый темнопольный микроскоп. Лучи света здесь идут не через объект наблюдения в объектив микроскопа, а сбоку. Вы, наверное, видели, как ярко светятся пылинки в солнечном луче, пробившемся из-за штор или ставни в темной комнате.

Примерно так же выглядят в темнопольном микроскопе и бактерии — как светлые точки на угольно-черном или коричневатом фоне. Общие очертания их при этом немного смазываются, но зато хорошо видно движение бактерий. А характер движения позволяет распознавать возбудителей некоторых болезней.


Фото: Saroj Regmi


Фото: U.S. Geological Survey


Фото: Umberto Salvagnin

Иные бактерии не имеют жгутиков, нужных для передвижения. Но это не значит, что в поле зрения микроскопа они будут неподвижны. Нет, вам покажется, что бактерии движутся, причем все разом, как муравьи в развороченном муравейнике. Однако это — не самостоятельное, активное движение микроба, а так называемое броуновское движение.

Броуновское движение любых мелких частиц, плавающих в жидкости (отнюдь не только микробов), — следствие беспорядочного теплового движения молекул этой жидкости. Молекулы давят на частицу со всех сторон, и она, так сказать, «топчется на месте».

Зато если под микроскопом подвижные бактерии, то вы увидите, как быстро они пересекают поле зрения, замирают на месте, а затем снова устремляются дальше. Особенно интересно наблюдать за спирохетами, похожими на ожившую спираль от электрической плитки. Они настолько тонки, что под обычным микроскопом живую спирохету трудно разглядеть.

В темнопольном микроскопе они видны гораздо лучше. Вы, наверное, найдете их в зубном налете; только хорошенько приглядитесь — лучше всего искать спирохет во время их движения. Они или плывут, извиваясь, как змейки, или дергаются на месте и даже складываются пополам.

Живых бактерий рассматривать в микроскоп не столь удобно, как мертвых и окрашенных.

С каким увеличением желательно приобрести микроскоп, чтобы увидеть в АКЧ микроорганизмы?

Детали строения этих организмов были изучены именно на окрашенных препаратах. Чтобы окрасить бактерии, нужно нанести их на стекло (как говорят, сделать мазок), высушить его, прогреть на пламени горелки (чтобы клетки впоследствии лучше подкрасились) и капнуть на мазок каплю специальной краски.

Если вы попадете в микробиологическую лабораторию, то там, конечно, найдется набор разнообразных красок. Одна из самых распространенных — метиленовая синяя. Так как она входит в состав чернил для авторучки, то за неимением лучшего можно брызнуть на мазок каплю чернил. Через 6—8 минут краску надо смыть водой и высушить мазок.

В зависимости от того, какой вид бактерий был окрашен, вы увидите под микроскопом шарики или палочки — прямые, изогнутые или похожие на запятую. Из палочек и шариков могут образовываться цепочки. Шарики иногда объединены в группы по четыре, восемь и шестнадцать. У некоторых палочек на концах есть утолщения вроде спичечной головки. Таковы основные формы бактерий.

Однако столь краткое описание напоминает слова одного философа, который определил человека как двуногое без перьев. У бактерий, даже окрашенных самым простым способом, можно найти довольно много особенностей их строения. О некоторых из этих особенностей мы здесь расскажем.

Палочковидных бактерий в природе больше всего. Само слово «бактерия» по-гречески значит «палочка». Один из самых распространенных микробов, так называемая кишечная палочка, имеет форму длинного овала. Кишечная палочка обитает в толстых кишках; в одном грамме человеческих испражнений может содержаться 2—Ъ миллиарда этих микроорганизмов (представляете, сколько их попадает во внешнюю среду в населенной местности!).

Читайте также:  Что такое жжение

По форме от кишечной палочки неотличимы и болезнетворные микробы — возбудители дизентерии, тифа, паратифа. Возбудитель сибирской язвы — тоже палочка, но с обрубленными концами. Бактерии сибирской язвы часто располагаются в виде длинных нитей-цепочек.

Форму палочки имеют возбудители столбняка, газовой гангрены и многих других болезней.

Иногда можно встретить название «холерная запятая». Действительно, так называемые вибрионы похожи на запятую. К ним относится и возбудитель холеры. Только не представляйте себе холерную запятую в виде головастика, как любил ее рисовать в «Окнах РОСТА» Маяковский. Это скорее изогнутая палочка равномерной толщины. Строго говоря, это даже не палочка, а отрезок спирали, один ее неполный виток.

Шаровидные бактерии называются кокками. Кокки, собранные в гроздья, напоминающие виноградные, носят название стафилококков. Некоторые из них, попадая в ранки или царапины, служат причиной нагноений и вызывают тяжелые заболевания у детей раннего возраста.

Много несчастий причиняют человеку стрептококки — микробы, похожие на нитки бус или четки. Они вызывают и рожистое воспаление, и ангину, и даже заболевание сердца — эндокардит. Коккам, расположенным по два — диплококкам, — человек обязан такими болезнями, как менингит, воспаление легких, гонорея.

В окрашенном мазке легко определить форму бактерий, но изучить строение бактериальной клетки во всех деталях невозможно. И если мы все-таки уже много знаем о строении бактерий, то этому помогли специальные методы их окраски и изучение их под электронным микроскопом.

  • микроскопический метод: световая, фазово-контрастная, флуоресцентная, электронная;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных);
  • молекулярно-генетический метод (ПЦР — полимеразная цепная реакция)
  • серологический метод — выявления антигенов микроорганизмов или антител к ним;

Способы приготовления препаратов для микроскопии. При помощи светового микроскопа можно изучать микроорганизмы, как в живом, так и в окрашенном состоянии. При исследовании микробов в живом состоянии можно получить представление о размерах, форме и характере их движения. Иногда внутри живой клетки видны блестящие, сильно преломляющие свет гранулы и споры. Для изучения микробов в живом состоянии готовят препараты висячей и раздавленной капли. Для приготовления препарата висячей капли (рис. 19) бактериологической петлей в центр покровного стекла наносят небольшую каплю исследуемого материала, суспендированного в жидкости (изотонический раствор хлорида натрия, мясопептонный бульон). Затем берут специальное стекло с луночкой в центре и края ее смазывают вазелиновым маслом. Луночкой предметного стекла накрывают каплю исследуемого материала на покровном стекле так, чтобы капля находилась в центре луночки. Слегка прижимают предметное стекло и быстро переворачивают. При правильном приготовлении препарата капля свисает в луночку. Вазелиновое масло предохраняет ее от высыхания.

Препарат раздавленной капли готовят нанесением капли суспендированного в жидкости материала на предметное стекло, которое затем накрывают покровным.

Для световой микроскопии применяют микроскоп — оптический прибор, позволяющий наблюдать мелкие объекты. Увеличение изображения достигают системой линз конденсора, объектива и окуляра. Конденсор, расположенный между источником света и изучаемым объектом, собирает лучи света в поле микроскопа. Объектив создаёт изображение поля микроскопа внутри тубуса. Окуляр увеличивает это изображение и делает возможным его восприятие глазом.

Микроскопия в домашних условиях

Предел разрешения микроскопа (минимальное расстояние, на котором различимы два объекта) определяется длиной световой волны и апертурой линз. Теоретически возможный предел разрешения светового микроскопа равен 0,2 мкм; реальное разрешение можно повысить за счёт увеличения апертуры оптической системы, например путём увеличения коэффициента преломления. Коэффициент преломления (иммерсии) жидких сред больше коэффициента преломления воздуха («=1,0), при микроскопировании применяют несколько иммерсионных сред: масляную, глицериновую, водную. Механическая часть микроскопа включает штатив, предметный столик, макро- и микрометрический винты, тубус, тубусодержатель.

Темнопольная микроскопия позволяет наблюдать живые бактерии. Для этого используют темнопольный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Перед началом работы свет устанавливают и центрируют по светлому полю, затем светлопольный конденсор удаляют и заменяют соответствующей системой (например, ОИ-10 или ОИ-21). Препарат готовят по методу «раздавленной капли», делая его как можно более тонким (толщина покровного стекла не должна быть толще 1 мм). Наблюдаемый объект выглядит как освещенный на тёмном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи. В качестве иммерсионной жидкости пригодно вазелиновое масло.

Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объекты за счёт повышения их контрастности. При прохождении света через окрашенные объекты происходит изменение амплитуды световой волны, а при прохождении через неокрашенные — фазы световой волны, что используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии. Для повышения контрастности фазовые кольца покрывают металлом, поглощающим прямой свет, не влияя на сдвиг фазы. В оптической системе микроскопа применяют специальный конденсор с револьвером диафрагм и центрирующим устройством; объективы заменяют на иммерсионные объективы-апохроматы.

Читайте также:  Можно ли пользоваться

Поляризационная микроскопия позволяет получать изображения неокрашенных анизотропных структур (например, коллагеновых волокон, миофибрилл или клеток микроорганизмов). Принцип метода основан на изучении объекта в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях.

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии. Метод применяют для получения контрастного трёхмерного изображения неокрашенных объектов. Принцип метода основан на раздвоении светового потока в микроскопе; один луч проходит через объект, другой — мимо него. Оба луча соединяются в окуляре и интерферируют между собой.

Люминесцентная микроскопия. Метод основан на способности некоторых веществ светиться при воздействии коротковолнового излучения. При этом испускаемые световые волны длиннее волны, вызывающей свечение. Иными словами, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра. Например, если индуцирующее излучение синее, то образующееся свечение может быть красным или жёлтым. Эти вещества (флюоресцеин изоцианат, акридиновый оранжевый, родамин и др.) используют как флюоресцирующие красители для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от источника (ртутная лампа сверхвысокого давления) проходит через два фильтра. Первый (синий) фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Второй (жёлтый) задерживает синий свет, но пропускает жёлтый, красный, зелёный свет, излучаемый флюоресцирующим объектом и воспринимаемый глазом. Обычно исследуемые микроорганизмы окрашивают непосредственно либо с помощью AT или лектинов, помеченных флюорохромами. Препараты взаимодействуют с Аг или другими связывающими лиганд структурами объекта. Люминесцентная микроскопия нашла широкое применение для визуализации результатов иммунохимических реакций, основанных на специфическом взаимодействии меченных флюоресцирующими красителями AT с Аг изучаемого объекта.

С тех пор, как ученые обнаружили микробов, они учились их выращивать на различных питательных средах. Ведь для того чтобы знать, как бороться с тем или иным микроорганизмом, нужно изучить не только его форму, но и повадки, образ жизни, потребности в питании. Сейчас в лабораториях исследователи могут выращивать практически любой микроорганизм, для этого разработано огромное количество питательных сред. Но в прошлом, во времена Луи Пастера – родителя современной науки о микробах (микробиологии), в распоряжении ученых была доступна для изучения лишь вода из лесных луж и водоемов, настой сена и мясной бульон.

Слово "микроорганизм" понятие собирательное, в него входят все невидимые невооруженным глазом организмы – бактерии, грибы, одноклеточные и еще целый ряд микрожителей. К слову, вирусы не относят к микробам. Их выделяют в отдельную группу, и наблюдать их в обычный световой микроскоп не представляется возможным.

Микробы вездесущи, обнаружить их можно буквально на всем, что нас окружает. Они бывают аэробами, т.е. для их жизнедеятельности требуется присутствие свободного молекулярного кислорода, но могут быть и анаэробами, способными прожить в условиях без доступа кислорода. Размеры, форма и принципы питания у микробов очень разнятся, но из них всех, пожалуй, самой красивой и причудливой является инфузория туфелька.

Инфузорий можно часами наблюдать в микроскоп. Они имеют очень необычную форму и легко узнаются среди прочих микроорганизмов. Для наблюдения за ней не требуется длительных подготовок и специальных навыков. Ее может увидеть любой желающий даже с помощью самого простого микроскопа.

Проведение опыта с инфузорией

Для проведения опыта понадобится совсем немного воды из лесной лужи, зацветшего водоема, из вазы с цветами или даже из аквариума. Идеально, если в воде окажется несколько веточек водорослей. Препарат с инфузорией можно приготовить по принципу раздавленной капли, или сделать "висячую" каплю на предметном стекле с выемкой.

При рассматривании образца под микроскопом (лучше всего это делать на среднем или большом увеличении) можно заметить двигающихся овальных существ. Строго говоря, они не совсем овальные – передний конец инфузории заострен, а задний, наоборот, имеет сильно округлую форму. Одна из боковых сторон, приблизительно по центру туловища, вогнута, что придает существу большое сходство с подошвой туфли. Отсюда и название микроорганизма – инфузория туфелька. Вокруг всего тела инфузории располагаются в несколько слоев реснички, которые помогают ей двигаться и "загонять" пищу в ротовое отверстие, расположенное неподалеку от головного конца.

Для особо пытливых исследователей будет интересно понаблюдать за процессом пищеварения у инфузории. Пища, попавшая в ротовое отверстие, постепенно перемещается в "желудок" – пищеварительную вакуоль, похожую на пузырек. В ней пища переваривается, а затем выталкивается в другую вакуоль – сократительную, которая является чем то, наподобие кишечника у животных. Сократительная вакуоль служит для устранения остатков пищи наружу. Для того чтобы увидеть, как происходят эти процессы, нужно покормить инфузорию, например, несколькими капельками обычной туши для заправки перьевых ручек. После того, как инфузория заглотнет ее, можно рассмотреть месторасположение пищеварительной вакуоли – темный шарик на фоне светлого тела микроорганизма.

Читайте также:  Плохая реакция на манту у ребенка причины

Многие знают, что инфузории относятся к классу простейших, но это название довольно относительное, т.к. многочисленные опыты над инфузориями обнаружили у них зачатки психической деятельности. К примеру, инфузорию помещали в узкую трубку, диаметр которой совсем немного превосходил размер самого животного. Трубку с обеих сторон запаивали. Когда инфузория доплывала до одной стороны, она делала попытки проплыть дальше, но вскоре разворачивалась головным концом и направлялась в другую сторону. Со временем инфузория стала тратить на развороты все меньше времени и сил, а значит, смогла приспособиться к новым условиям.

Но поражает в инфузории даже не это. В человеческом или другом сложном организме все клетки узкоспециализированы и выполняют какую-либо одну функцию. Инфузория же состоит из одной-единственной клетки, в которой есть, хоть и примитивная, но выделительная и пищеварительная системы, мышечная система, состоящая из сократительных волокон, двигательный аппарат из ресничек. Следовательно, эта единственная клетка может полностью обеспечивать все стороны жизнедеятельности. Возможно поэтому ученые прошлого с таким уважением относились к инфузории и часами просиживали над микроскопом, изучая и зарисовывая ее повадки.

Какие же микроскопы подойдут?

В микроскоп, способный давать увеличение не менее 600-800х крат, можно понаблюдать не только простейших, но и бактерий. Самый простой способ это сделать – собрать небольшое количество зубного налета и развести его в капельке воды. Так можно увидеть основных представителей царства бактерий. В простом лабораторном микроскопе они будут выглядеть неказисто – маленькие шарики, палочки или нити с нечеткими контурами. Но при использовании фазово-контрастного метода на более дорогостоящих лабораторных моделях можно рассмотреть гораздо больше. Их контуры станут четче, а тела будут выделяться ярким светом на темном фоне. И хотя внутреннюю структуру при таком исследовании изучить не получится (для этого нужно убить бактерий и окрасить), можно увидеть движение бактерий. А по характеру движений ученые определяют принадлежность бактерий к тому или иному классу и выявляют возбудителей некоторых болезней.

Для лабораторных же исследований, направленных на выявление и более точную идентификацию болезнетворных организмов, часто используются жидкие и плотные питательные среды. В них можно наблюдать не только отдельных микроорганизмов, но и целые колонии, т.е. большие скопления клеток, видимые невооруженным глазом. Однако эта техника достаточно сложная и не годится для применения в домашних условиях.

Еще один материал, который не обходят стороной для создания тканей – это хлопок. Он намного мягче и практичнее, в отличие ото льна.

Дети с радостью и интересом познают окружающую действительность. Многие родители могут заметить, что кроме традиционных способов познания мира с помощью собственных органов чувств, их детям интересно также проводить исследования мелких деталей предметов с помощью микроскопов. На сегодняшний день этот интерес может быть легко удовлетворен, так как в магазинах игрушек, детских магазинах а также в сети Интернет представлено большое количество различной микроскопической техники для детей.

Как увидеть микроорганизмы находящиеся в воде без микроскопа в домашних условиях?

Конечно же, по отдельности микроорганизмы без микроскопа увидеть нельзя, слишком уж они маленькие. Но толпу микроорганизмов, этакую своеобразную их тусовку увидеть достаточно просто. Наберите из пруда в полиэтиленовую бутылку воды примерно на две трети и выставьте ее на солнце. Через несколько дней на поверхности воды появится заметная пленка — это и есть колония микроорганизмов.

Если же, все-таки, хочется увидеть микроорганизмов по отдельности, можно соорудить примитивный микроскоп по типу того, какой был у Левенгука. Такой микроскоп давал увеличение до 300 крат. Как сделать такой микроскоп своими руками.

Видела в какой то программе по телевизору – как в домашних условиях не прибегая к сложной технике увидеть в воде микроэлементы находящиеся в ней. Для этого нужно то – приобрести лазерную указку любого цвета и сделать это можно на любом сайте по продаже китайских товаров за несколько десятков рублей.

Так же можно данный товар найти в магазине – "1000 мелочей" например. Далее просто мочите в воде палец например и опускаете его вниз – чтобы капля повисла у вас на нём. Затем направляете луч света с лазерной указки на эту каплю, а на стене в отражении вы увидите всё что находится в капле на вашем пальце. И да кстати, этот опыт нужно проводить в тёмной комнате.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector