Капсулы бактерий и их значение

В прокариотических клетках (безъядерных) нет внутреннего разделения, т.е. функции всех «внутренних органов» у бактерий выполняет мембрана. Она может образовывать глубокие внутренние складки, но все равно остается оболочкой клетки. По сути, нормально функционирующая бактерия имеет следующее строение:

  • цитоплазма (внутреннее содержимое клетки);
  • оболочка (мембрана);
  • поверхностные структуры (капсула, жгутики, микроворсинки).

Капсула клетки – поверхностная слизистая структура, образующаяся вокруг оболочки. Это аморфное вещество имеет большое значение для жизнедеятельности клетки, делает оболочку более прочной и плотной, служит защитным барьером на пути фагоцитов, иногда выполняет роль кладовой и хранит запасы пищи. В строении капсулы различают два слоя:

Внутренний слой – часть наружного слоя цитоплазмы клетки, а наружный – результат секреторной функции бактерии.

Продукты биосинтеза бактерии откладывают вокруг клеточной оболочки в виде своеобразного кокона, поддерживающего жизнедеятельность клетки. В зависимости от толщины слизистого слоя различают:

  • Микрокапсулы. Слой слизи меньше 0,2 мкм. Выявляется только с помощью электронного микроскопа.
  • Макрокапсулы, имеющие стенки толще 0,2 мкм. Их уже можно рассмотреть в обычный микроскоп, но для выявления слизистой структуры понадобится специальная окраска негативным методом.

Не все микроорганизмы обладают способностью образовывать верхний слой в виде аморфного кокона. Некоторые бактерии образуют их в любых условиях (истинно капсульные бактерии), но для большинства образование капсул – метод защиты от окружающей среды.

Для микроорганизмов защитные оболочки имеют большое значение:

  • они образуют влажную среду, в которой клетка чувствует себя более комфортно;
  • аморфное строение кокона защищает клетки от высыхания и предохраняет их от механических повреждений;
  • увеличивают способность бактерий сцепляться друг с другом или с другими поверхностями, т. е. увеличивают их адгезию;
  • выполняют функции иммунного барьера, т. е. препятствуют проникновению в клетку фагов (вирусов для микроорганизмов).

Клетки, имеющие капсулу, способны выжить в неблагоприятных условиях. Особенно ярко это выявляется на примере патогенных микробов. При попадании в организм некоторые бактерии тут же обзаводятся рыхлой стенкой, защищающей их от иммунной системы макроорганизма (человека или животного), тогда как во внешней среде они превосходно существуют в своем обычном виде. В случае с патогенными бактериями наличие капсулы затрудняет антибиотикам проникновение в клетку и, соответственно, мешает организму победить болезнь.

Если бактерии соединены в колонию, то оболочка помогает осуществлять связь между отдельными клетками и выполняет функции их соединения между собой. Вязкая субстанция капсулы также имеет значение для крепления клетки или колонии к другим поверхностям.

Внеклеточные полимерные вещества, накапливаемые в капсуле, можно применять на практике. Так, их используют для получения искусственной плазмы крови или для выращивания тончайших синтетических пленок.

Выявление капсул. В строении капсулы принимает участие очень много воды, до 98%. Помимо того, что жидкость делает кокон очень непрочным, она еще и прозрачна, т. е. рассмотреть гелеподобную оболочку под микроскопом обычным методом без дополнительной подготовки не получится.

В нормальном состоянии бактерии тоже прозрачны. Обычно для выявления клеток используют различные методы окраски, что позволяет легко рассмотреть их под микроскопом. Но для капсул обычные способы не подходят по нескольким причинам:

  • Слизистое вещество капсулы плохо задерживает красящие пигменты, после промывки препарата (это обязательная процедура при окрашивании) слизь остается бесцветной.
  • Аморфные оболочки очень мягкие и непрочные, в процессе окрашивания их легко повредить. При обычных методах окрашивания препарат подвергается механическим воздействиям, которые могут уничтожить сам объект исследования.

Одним из способов выявления такой непрочной субстанции является метод окраски по Гинсу. Он основан на неспособности капсулы удерживать краску и заключается в окрашивании окружающей среды и самой бактерии:

  • на предметное стекло наносят каплю туши;
  • добавляют в тушь куплю раствора, содержащего исследуемые клетки;
  • перемешивают и аккуратно распределяют жидкость по поверхности;
  • оставляют для высыхания на воздухе и фиксируют (обрабатывают сулемой, спиртом или быстро обжигают);
  • погружают в раствор красящих веществ;
  • промывают водой и высушивают.
Читайте также:  Вич на последней стадии фото людей

Под микроскопом готовый препарат выглядит следующим образом: на темном (или черном) фоне туши хорошо видны красные или фиолетовые бактерии, окруженные светлым (неокрашенным) ободком.

Один из самых простых методов выявления капсул – окраска по Дюгиду. При этом способе тушь смешивают с культурой на предметном стекле, затем помещают сверху покровное стекло и сильно прижимают, в результате чего жидкость распределяется тонким слоем между поверхностями. Рассматривают готовый препарат с помощью специального объектива с большим увеличением. На темном фоне окружающей клетки туши отчетливо выделяются прозрачные зоны капсул.

Выявить капсулы можно еще несколькими методами:

  • с помощью окраски по Романовскому – Гимзе с использованием специального красящего состава;
  • методом окраски по Михину с помощью метиленовой сини Леффлера;
  • методом окрашивания по Бурри – Гинсу.

Когда на улице холодно, мы надеваем теплую куртку, в дождь берем с собой зонтик, отправляясь в поход, прихватываем рюкзак с едой. Все эти функции в микромире успешно выполняет капсула бактерий. Есть так называемые истинно капсульные клетки, образующие защищающий их кокон в любых условиях. Есть клетки, формирующие очень тонкий слизистый слой, выявить который можно с помощью электронного микроскопа. Но для основной части бактерий формирование защитного слоя имеет значение только в агрессивной для них внешней среде.

Поверхностная структура клетки

В прокариотических клетках (безъядерных) нет внутреннего разделения, т.е. функции всех «внутренних органов» у бактерий выполняет мембрана. Она может образовывать глубокие внутренние складки, но все равно остается оболочкой клетки. По сути, нормально функционирующая бактерия имеет следующее строение:

  • цитоплазма (внутреннее содержимое клетки);
  • оболочка (мембрана);
  • поверхностные структуры (капсула, жгутики, микроворсинки).

Капсула клетки – поверхностная слизистая структура, образующаяся вокруг оболочки. Это аморфное вещество имеет большое значение для жизнедеятельности клетки, делает оболочку более прочной и плотной, служит защитным барьером на пути фагоцитов, иногда выполняет роль кладовой и хранит запасы пищи. В строении капсулы различают два слоя: внутренний и наружный. Внутренний слой – часть наружного слоя цитоплазмы клетки, а наружный – результат секреторной функции бактерии.

Виды капсул

Продукты биосинтеза бактерии откладывают вокруг клеточной оболочки в виде своеобразного кокона, поддерживающего жизнедеятельность клетки. В зависимости от толщины слизистого слоя различают:

  1. Микрокапсулы. Слой слизи меньше 0,2 мкм. Выявляется только с помощью электронного микроскопа.
  2. Макрокапсулы, имеющие стенки толще 0,2 мкм. Их уже можно рассмотреть в обычный микроскоп, но для выявления слизистой структуры понадобится специальная окраска негативным методом.

Не все микроорганизмы обладают способностью образовывать верхний слой в виде аморфного кокона. Некоторые бактерии образуют их в любых условиях (истинно капсульные бактерии), но для большинства образование капсул – метод защиты от окружающей среды.

Зачем клетке нужна дополнительная оболочка

Для микроорганизмов защитные оболочки имеют большое значение:

  • они образуют влажную среду, в которой клетка чувствует себя более комфортно;
  • аморфное строение кокона защищает клетки от высыхания и предохраняет их от механических повреждений;
  • увеличивают способность бактерий сцепляться друг с другом или с другими поверхностями, т. е. увеличивают их адгезию;
  • выполняют функции иммунного барьера, т. е. препятствуют проникновению в клетку фагов (вирусов для микроорганизмов).

Клетки, имеющие капсулу, способны выжить в неблагоприятных условиях. Особенно ярко это выявляется на примере патогенных микробов. При попадании в организм некоторые бактерии тут же обзаводятся рыхлой стенкой, защищающей их от иммунной системы макроорганизма (человека или животного), тогда как во внешней среде они превосходно существуют в своем обычном виде. В случае с патогенными бактериями наличие капсулы затрудняет антибиотикам проникновение в клетку и, соответственно, мешает организму победить болезнь.

Если бактерии соединены в колонию, то оболочка помогает осуществлять связь между отдельными клетками и выполняет функции их соединения между собой. Вязкая субстанция капсулы также имеет значение для крепления клетки или колонии к другим поверхностям.

Внеклеточные полимерные вещества, накапливаемые в капсуле, можно применять на практике. Так, их используют для получения искусственной плазмы крови или для выращивания тончайших синтетических пленок.

Выявление капсул

В строении капсулы принимает участие очень много воды, до 98%. Помимо того что жидкость делает кокон очень непрочным, она еще и прозрачна, т. е. рассмотреть гелеподобную оболочку под микроскопом обычным методом без дополнительной подготовки не получится.

Читайте также:  Инвалидность по гепатиту с

В нормальном состоянии бактерии тоже прозрачны. Обычно для выявления клеток используют различные методы окраски, что позволяет легко рассмотреть их под микроскопом. Но для капсул обычные способы не подходят по нескольким причинам:

  1. Слизистое вещество капсулы плохо задерживает красящие пигменты, после промывки препарата (это обязательная процедура при окрашивании) слизь остается бесцветной.
  2. Аморфные оболочки очень мягкие и непрочные, в процессе окрашивания их легко повредить. При обычных методах окрашивания препарат подвергается механическим воздействиям, которые могут уничтожить сам объект исследования.

Одним из способов выявления такой непрочной субстанции является метод окраски по Гинсу. Он основан на неспособности капсулы удерживать краску и заключается в окрашивании окружающей среды и самой бактерии:

  • на предметное стекло наносят каплю туши;
  • добавляют в тушь куплю раствора, содержащего исследуемые клетки;
  • перемешивают и аккуратно распределяют жидкость по поверхности;
  • оставляют для высыхания на воздухе и фиксируют (обрабатывают сулемой, спиртом или быстро обжигают);
  • погружают в раствор красящих веществ;
  • промывают водой и высушивают.

Под микроскопом готовый препарат выглядит следующим образом: на темном (или черном) фоне туши хорошо видны красные или фиолетовые бактерии, окруженные светлым (неокрашенным) ободком.

Один из самых простых методов выявления капсул – окраска по Дюгиду. При этом способе тушь смешивают с культурой на предметном стекле, затем помещают сверху покровное стекло и сильно прижимают, в результате чего жидкость распределяется тонким слоем между поверхностями. Рассматривают готовый препарат с помощью специального объектива с большим увеличением. На темном фоне окружающей клетки туши отчетливо выделяются прозрачные зоны капсул.

Выявить капсулы можно еще несколькими методами:

  • с помощью окраски по Романовскому – Гимзе с использованием специального красящего состава;
  • методом окраски по Михину с помощью метиленовой сини Леффлера;
  • методом окрашивания по Бурри – Гинсу.

Ответ на нападение

Особое значение для изучения бактериальной оболочки имеет так называемая реакция Нейфельда. Этот способ основан на разбухании, разрыхлении капсульного вещества под воздействием антител, которые иммунная система организма использует для идентификации и обезвреживания различных чужеродных объектов.

Например, при попадании в организм пневмококков иммунная система пускает в ход антитела, соответствующие химическому составу капсул этих микробов. В ответ бактерии начинают наращивать толщину слизистого слоя, пытаясь уберечь клетку от гибели. В результате оболочка становится намного больше и заметнее.

При проведении медицинских анализов на выявление конкретного вида патогенных бактерий в исследуемый материал, полученный от больного, добавляют несколько видов сыворотки с различными антителами. Значение будет иметь тот результат, где ширина аморфного слоя самая большая. Таким способом достаточно просто подтвердить или установить диагноз, что позволит как можно быстрее начать необходимое лечение.

Бактериальные капсулы образовались в процессе эволюции. Скорее всего, их появление оказалось жизненно важным для некоторых бактерий. Мягкая, рыхлая оболочка в виде надежного кокона ограждала микроорганизмы почти от всех опасностей. Значение подобного защитного слоя для выживания вида сложно переоценить.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Ка́псула бакте́рий — поверхностная структура бактериальных клеток, залегающая поверх клеточной стенки или внешней мембраны и состоящая из экзополисахаридов [en] . Капсулы имеются у некоторых архей, например, у представителей родов Methanosarcina и Staphylothermus [en] . Структурной основой капсулы служат линейные или разветвлённые полигликаны и полипептиды, состоящие из одинаковых или разных мономеров. Фибриллы капсульных полимеров довольно гибки, ориентируются под прямым углом к поверхности клетки и сильно гидратированы, так что до 99 % капсулы составляет вода, из-за чего капсулы сложно визуализировать с помощью электронной микроскопии. Поверхность колоний бактерий, имеющих капсулу, выглядит гладкой, влажной и блестящей [1] . Функции капсулы различаются у непатогенных и патогенных бактерий [2] .

Содержание

Химический состав [ править | править код ]

Капсульные полисахариды классифицируют в зависимости от природы кислотного компонента, значения электрического заряда, наличия липидной части на редуцирующем [en] конце полисахаридов, влияния температуры на биосинтез и совместной экспрессии с липополисахаридом. Выделяют две основные группы капсульных полисахаридов [3] .

Читайте также:  Лечение доксициклином и метронидазолом

К первой группе относят полисахариды массой менее 50 кДа, состоящие из остатков гексуроновых кислот [en] . На редуцирующих концах имеются липидные фрагменты. Такие полисахариды не играют роли в патогенезе и обеспечивают выживание бактериальных клеток вне организма-хозяина [3] .

Полисахариды второй группы более крупные и тяжёлые, помимо остатков гексуроновых кислот содержат сиаловую кислоту. К редуцирующим концам прикреплена фосфатидная кислота [en] . Эти полисахариды имеют важное значение для патогенеза [3] .

У некоторых бактерий состав капсулы своеобразен. Так, у возбудителя сибирской язвы Bacillus anthracis капсула состоит из поли-D-глутамата и является важным факторов вирулентности [en] . Гены, необходимые для её синтеза, расположены на плазмиде. Капсула B. anthracis имеет значительный отрицательный заряд и потому препятствует фагоцитозу бактериальных клеток макрофагами. Если эндоспора прорастает в присутствии углекислого газа, то капсула формируется вокруг клетки сразу же при её выходе из споры. У Neisseria meningit >[3] .

У непатогенных бактерий [ править | править код ]

У непатогенных бактерий капсула чаще всего служит защитой от высыхания в засушливых местообитаниях или водоёмах с повышенной солёностью. Благодаря капсуле цианобактерии рода Nostoc могут расти в пустынях в виде корочек, которые увлажняются только утренней росой. Образование капсул у непатогенных бактерий запускается в стрессовых условиях, таких как фосфорное голодание. Иногда в условиях обильного увлажнения обводнённые полимеры капсулы теряют связь с клеточной оболочкой и уходят во внешнюю среду, где начинают хаотически плавать, образуя так называемую «внешнюю слизь». Наиболее часто капсульные полимеры уходят во внешнюю среду при гиперпродукции [4] .

У патогенных бактерий [ править | править код ]

У бактерий, вызывающих заболевания животных и человека, капсула является важным фактором вирулентности, так как она защищает бактериальную клетку от действия иммунной системы. В частности, покрытые капсулой бактерии могут уклоняться от фагоцитирования за счёт гидрофильности, упругости и электрического заряда поверхности. Из-за капсулы до бактерии не могут добраться белки системы комплемента и бактерицидные белки, такие как дефензины. Более того, сама капсула комплемент не активирует. Капсула предохраняет бактерию от взаимодействия с антителами, а у грамотрицательных бактерий маскирует липополисахарид (О-антиген). Сама по себе капсула слабоиммуногенна и плохо поддаётся опсонизации, однако вакцины, содержащие компоненты капсулы, эффективны и запускают образование специфических антител. Иногда капсула мимикрирует [en] под молекулярные структуры организма хозяина. Например, капсульный антиген К1 кишечной палочки (Escherichia coli) содержит сиаловую кислоту, за счёт чего становится похож на гликокаликс хозяйских клеток [5] .

Капсула имеются и у ряда фитопатогенных бактерий, однако у них она не выполняет особой роли. В некоторых случаях она обеспечивает выживание бактерий во внешней среде. Капсула может способствовать распространению бактерии по тканям растения, защищает бактерию при размножении в межклетниках и предохраняет от действия иммунной системы растения [6] .

У симбиотических бактерий [ править | править код ]

У ряда симбиотических бактерий тоже имеется капсула, причём у них роль капсулы очень специфична и связана с внутриклеточной передачей сигнала. Так, у клубеньковых бактерий, обитающих в корнях бобовых растений, капсула участвует в прикреплении бактериальной клетки к корневому волоску [en] и запускает в клетке корня сигнальные пути, благодаря которым бактерия проникает в ткани растения [7] .

Окрашивание [ править | править код ]

Когда капсульные полимеры имеют кислотные свойства (например, за счёт карбоксильных групп), они хорошо поддаются окрашиванию катионными красителями, которые образуют молекулярные сшивки, например, рутений красный [en] и альциан синий [en] . Также капсулы можно окрашивать при помощи диаминов, лектинов и специфических антикапсульных антител [4] . Например, Quellung-реакция [en] , с помощью которой можно визуализировать капсулу Streptococcus pneumoniae, Klebsiella pneumoniae, Neisseria meningit >[8] .

В зависимости от особенностей окрашивания капсулы подразделяют на микрокапсулы и макрокапсулы. Макрокапсулы выявляются при окрашивании тушью как светлая зона между непрозрачной средой и клеточной стенкой, которую можно видеть в световой микроскоп. Микрокапсулы очень тонкие и при окрашивании тушью не видны, однако их можно выявить с помощью серологических методов [9] .

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector